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A depth-averaged debris-flow
model that includes the effects
of evolving dilatancy.
II. Numerical predictions and
experimental tests
David L. George and Richard M. Iverson

US Geological Survey, 1300 SE Cardinal Ct. Vancouver,
WA 98683, USA

We evaluate a new depth-averaged mathematical
model that is designed to simulate all stages of
debris-flow motion, from initiation to deposition.
A companion paper shows how the model’s five
governing equations describe simultaneous evolution
of flow thickness, solid volume fraction, basal
pore-fluid pressure and two components of flow
momentum. Each equation contains a source term that
represents the influence of state-dependent granular
dilatancy. Here, we recapitulate the equations and
analyse their eigenstructure to show that they form a
hyperbolic system with desirable stability properties.
To solve the equations, we use a shock-capturing
numerical scheme with adaptive mesh refinement,
implemented in an open-source software package
we call D-Claw. As tests of D-Claw, we compare
model output with results from two sets of large-
scale debris-flow experiments. One set focuses on
flow initiation from landslides triggered by rising
pore-water pressures, and the other focuses on
downstream flow dynamics, runout and deposition.
D-Claw performs well in predicting evolution of flow
speeds, thicknesses and basal pore-fluid pressures
measured in each type of experiment. Computational
results illustrate the critical role of dilatancy in linking
coevolution of the solid volume fraction and pore-
fluid pressure, which mediates basal Coulomb friction
and thereby regulates debris-flow dynamics.

1. Introduction
In a companion paper, we derive a new depth-averaged
model aimed at seamlessly simulating debris-flow

2014 The Author(s) Published by the Royal Society. All rights reserved.
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motion from initiation to deposition [1]. Here, we describe mathematical properties of the model,
our numerical solution technique, and tests of numerical predictions against experimental data.
Our model can be viewed in a broad context by recognizing that debris flows belong to a large
class of gravity-driven mass flows in which a relatively thin layer of material with an evolving
free upper surface moves over basal topography. Such phenomena include rock avalanches, snow
avalanches, pyroclastic flows, lava flows and various types of water flooding (tsunamis, dam
breaches, etc.). To simulate these phenomena, researchers have proposed many mathematical
models, most of which are depth averaged. These models have the advantage of computational
efficiency, due to their restricted dimensionality as well as inclusion of the free-surface height as
a dependent variable in the governing equations. The classical depth-averaged model is the St.
Venant or shallow-water model, which describes a pure fluid with a hydrostatic vertical pressure
gradient (e.g. [2]). The shallow-water equations are hyperbolic conservation laws with source
terms—an extensively studied class of mathematical problems—and they represent a special case
of the more-general set of equations we use to model debris flows.

A feature distinguishing debris flows from many other shallow flows is the presence of roughly
equal volumes of diverse solid grains and incompressible, viscous interstitial fluid that interacts
with the solids. This interaction has a profound effect on the apparent rheological properties of
the bulk mixture [3], but accounting for the interaction in depth-averaged mathematical models
has proven challenging. Pitman & Le [4] developed a depth-averaged version of Jackson’s [5]
three-dimensional, two-phase granular–fluid equations, and various extensions of their model
have been proposed (e.g. [6–8]). These models are expressed as hyperbolic systems of partial
differential equations, yet they possess an unstable elliptic degeneracy associated with loss of
hyperbolicity in particular flow regimes [6,9].

An alternative approach towards encapsulating granular–fluid interactions in depth-averaged
models involves calculating the bulk mixture velocity (i.e. as if the mixture were a one-phase
material) and accounting for the effects of phase interactions in the mixture stresses. Iverson [10]
and Iverson & Denlinger [11] pursued this approach by including diffusive dissipation models for
the pore-fluid pressure and advecting this pressure with the bulk mixture velocity. Solid stresses
are then mediated by fluid pressure through the use of Terzaghi’s effective stress principle, such
that normal stresses at grain contacts are proportional to bulk normal stresses minus the fluid
pressure. Nonetheless, these models do not fully account for the dynamic pressure response to
inter-granular rearrangements accompanied by evolution of solid and fluid volume fractions.

Recently, Kowalski & McElwaine [12] presented a mixture model that parallels our present
model because it includes feedback due to changes in solid and fluid volume fractions. Beginning
with two-phase equations in three dimensions, they derive equations for the evolving and
equilibrium volume fractions resulting from suspension or settling of solid grains. The fluid
pressure component of the bulk mixture stress is algebraically coupled to the volume fraction,
based on whether there is net particle settling or resuspension. The vertical structure of the solid
volume fraction is then projected onto a vertical centre of mass during depth-averaging. The
resulting equations employ a bulk mixture velocity, but because the centre of mass is modelled,
the equations retain some information about the vertical structure of the evolving solid volume
fraction. Therefore, as in our model, Kowalski & McElwaine [12] account for the coevolution of
changing volume fractions and pore-fluid pressure.

A fundamental distinction between our model and that of Kowalski & McElwaine [12]
involves the mechanisms regulating coevolution of volume fractions and fluid pressure; ours is
based on granular dilatancy, whereas theirs is based on the vertical centre of mass as a measure of
particle settling versus resuspension. Additionally, the models differ in how pore-fluid pressure
influences the flow momentum balance. In our model, the primary influence is through the basal
frictional resistance, which is reduced in the presence of excess pore-fluid pressure via Terzaghi’s
effective stress principle. Kowalski and McElwaine’s 2013 model could potentially accommodate
a similar effect, although currently the basal friction is proportional to the total bulk normal stress.

The equations derived in our companion paper [1] are also distinct from those of previous
debris-flow models in other regards. The role of pore-fluid pressure in our model is unlike that in
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the models mentioned above, because it is one of the evolving dependent variables. In our model
evolving granular dilatancy relates the evolution of excess pressure and solid volume fractions,
and closure is provided by a Darcy drag law for solid–fluid interactions [1].

Because of these novelties, one of our objectives in this paper is to evaluate the mathematical
structure of our model equations in a general context. The equations comprise a non-conservative
hyperbolic system with source terms, but unlike the equations of most two-phase models,
hyperbolicity is guaranteed without elliptic degeneracy (as is true in Kowalski and McElwaine’s
recent model). Additionally, the eigenstructure can be determined in a simple explicit form. The
influence of dilatancy is administered through the source term, which tightly couples the set of
evolution equations.

Other primary objectives of this paper are to provide a description of numerical issues
unique to our equations and a comparison of numerical simulations and data from large-scale
debris-flow experiments at the US Geological Survey (USGS) debris-flow flume [13–15]. These
comparisons test the model’s ability to simulate the complex, dynamic properties of debris
flows. In particular, they test the ability to seamlessly simulate processes involving slope failure,
liquefaction, downslope motion and deposition.

2. Summary of the mathematical model

(a) Governing equations
Our model equations describe a debris flow on an inclined planar basal surface, with flow velocity
components parallel to the surface. We use bed-normal coordinates, where x and y are local
orthogonal directions tangential to the bed, and z is the bed-normal direction in which quantities
are depth averaged (see fig. 6 in [1]). We adopt conventional shallow-flow assumptions and
thereby assume that the depth of the flow is small relative to the tangential length scales of the
flow (e.g. [16]). In §2c, we further discuss these assumptions as well as issues regarding more
arbitrary basal surfaces.

Our equations govern five dependent variables, h(x, y, t), hu(x, y, t), hv(x, y, t), hm(x, y, t) and
pb(x, y, t), where h is the height normal to the bed of a virtual free surface defined in our
companion paper (see fig. 7 in Iverson & George [1]), u and v are the depth-averaged flow
velocities in the x and y directions, respectively, m is the depth-averaged solid volume fraction
and pb denotes the pore-fluid pressure at the basal boundary. The equations can be written as

∂h
∂t

+ ∂(hu)
∂x

+ ∂(hv)
∂y

= ϕ1, (2.1a)

∂(hu)
∂t

+ ∂

∂x

(
hu2

)
+ κ

∂

∂x

(
1
2

gzh2
)

+ ∂(huv)
∂y

+ h(1 − κ)
ρ

∂pb

∂x
= ϕ2, (2.1b)

∂(hv)
∂t

+ ∂(huv)
∂x

+ ∂

∂y
(hv2) + κ

∂

∂y

(
1
2

gzh2
)

+ h(1 − κ)
ρ

∂pb

∂y
= ϕ3, (2.1c)

∂(hm)
∂t

+ ∂(hum)
∂x

+ ∂(hvm)
∂y

= ϕ4 (2.1d)

and
∂pb

∂t
− ρgzχu

∂h
∂x

+ ρgzχ
∂(hu)
∂x

+ u
∂pb

∂x
− ρgzχv

∂h
∂y

+ ρgzχ
∂(hv)
∂y

+ v
∂pb

∂y
= ϕ5, (2.1e)

where gz is the gravitational acceleration in the bed-normal direction (i.e. g = (gx, gy, gz)T). (See
appendix A for the exact correspondence between the system (2.1) and the equations presented
in [1].) The depth-averaged bulk density, ρ, is a function of the solid volume fraction

ρ = ρsm + (1 − m)ρf, (2.2)

where ρs and ρf are the intrinsic material densities of the solid and fluid constituencies,
respectively, which are assumed to be constant. The variable coefficient χ is introduced in (2.1e)
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for notational convenience and is given by

χ = (ρf + 3ρ)
4ρ

. (2.3)

The origin and role of the lateral pressure coefficient, κ in (2.1b) and (2.1c), is described in detail by
Iverson & George [1], and appendix A discusses the implications of a variable versus constant κ .

The source terms on the right-hand side of (2.1) are defined as

ϕ1 = (ρ − ρf)
ρ

D, (2.4a)

ϕ2 = hgx + uD
(ρ − ρf)
ρ

− (τs,x + τf ,x)

ρ
, (2.4b)

ϕ3 = hgy + vD
(ρ − ρf)
ρ

− (τs,y + τf ,y)

ρ
, (2.4c)

ϕ4 = −Dm
ρf

ρ
(2.4d)

and ϕ5 = ζD − 3
αh

‖(u, v)T‖ tanψ , (2.4e)

where the terms τ s = (τs,x, τs,y)T and τ f = (τf ,x, τf ,y)T are the basal shear traction exerted by the
solid phase and fluid phase, respectively, α is the debris’ elastic compressibility, ψ is the granular
dilatancy angle and D is the depth-averaged granular dilation rate, equal to the depth integral
of the divergence of the solid-phase velocity field [1]. The variable coefficient ζ is introduced in
equation (2.4e) for notational convenience and is given by

ζ = 3
2αh

+ gzρf(ρ − ρf)
4ρ

. (2.5)

As shown by Iverson & George [1], our formulation indicates that D is proportional to the
difference between basal pore-fluid pressure and hydrostatic pressure

D = − 2k
hμ

(pb − ρfgzh), (2.6)

where k is the hydraulic permeability of the debris, and μ is the pore-fluid viscosity. Equation (2.6)
implies that the pore-fluid pressure pb relaxes towards hydrostatic pressure, ρfgzh, at the same
rate as the relaxation D → 0. Equations (2.1e), (2.4e) and (2.6) imply that the term ζD contributes
to pore-fluid pressure relaxation, with a rate constant dependent on the model parameters and
solution state. This relaxation arises naturally as a consequence of pore-pressure diffusion, and
the timescale of this process is analysed and discussed in detail in our companion paper [1].

The hydraulic permeability of the debris, k, is a variable parameter. Various formulae for the
dependence of k on properties of sediment mixtures have been proposed in the literature, but
most formulae assume relatively idealized distributions of grain sizes and geometries. For poorly
sorted geological debris containing a great variety of grains, we use the empirical formula

k = k0 exp
0.6 − m

0.04
, (2.7)

which is derived by fitting data from permeability testing of diverse debris mixtures [1]. The value
of the constant k0 can be measured directly (see fig. 5 in [1]) or estimated for a natural debris flow.

The elastic compressibility of the debris, α, is also a variable parameter that is constrained by
data. Iverson & George [1] show that a suitable empiricism is

α = a
m(ρgzh − pb + σ0)

, (2.8)

where a and σ0 are specified constants (e.g. σ0 = 1000 Pa and a = 0.01–0.05 are typical for debris
used in flume experiments).

 on August 4, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


5

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130820

...................................................

Because the shear stress is depth-integrated, τ f and τ s account for the total basal resistance to
motion. For the fluid component of the resistance, we use a standard estimate

τ f = 2μ(1 − m)
h

(u, v)T, (2.9)

where the effective shear viscosity of the pore fluid, μ, accounts for the presence of suspended
fine particles (e.g. clay and silt). In most cases, the contribution of τ f to flow resistance is minor,
however. The dominant contribution comes from the solid component τ s. For non-stationary
states, we estimate τ s by using the Coulomb–Terzaghi equation for granular friction [1]

τ s = σe tan(φ + ψ)
(u, v)T

‖(u, v)T‖ . (2.10)

The factor σe is the basal effective normal stress, given by

σe = ρgzh − pb. (2.11)

The argument of the tangent function in equation (2.10) includes the constant-volume basal
friction angle, φ, plus the granular dilatancy angle, ψ—an evolving quantity that depends on
m. As explained in detail by Iverson & George [1], we define the dependence of ψ on m by using
the simple relationship

tanψ = m − meq, (2.12)

where
meq = mcrit

1 + √
N

. (2.13)

Here mcrit is the critical-state solid volume fraction commonly employed in soil mechanics (i.e. the
quasi-static equilibrium solid volume fraction such that there is no change in m during shearing,
with σe constant). The quantity N is a dimensionless state parameter, which we define as

N = μγ̇

ρsγ̇ 2δ2 + σe
, (2.14)

where γ̇ = 2‖(u, v)T‖/h is an estimate of the depth-averaged shear rate, and δ is a length scale
associated with grain collisions [1]. In our simulations, mcrit ranges from 0.56 to 0.64, and we set
δ = 1 mm.

For stationary debris, τ s represents static friction, which cannot be defined by equation (2.10).
For this case, we bound τ s by the shear traction for deforming debris

‖τ s‖ ≤ |σe tan(φ + ψ)|. (2.15)

In all static cases, τ s should oppose the net driving force due to gravity and longitudinal stress
gradients in the momentum equations (2.1b,c). If we denote this net driving force per unit area as
F = (Fx, Fy)T, we let

τ s = min(‖F‖, |σe tan(φ + ψ)|) F
‖F‖ . (2.16)

Therefore, if ‖F‖ exceeds the maximum shear traction defined by (2.15), the local force balance is
no longer in equilibrium and the mass locally becomes mobile. Otherwise, the local force balance
is in equilibrium and the mass locally remains immobile. Therefore, in general, τ s is defined
by equation (2.16) when ‖(u, v)T‖ = 0 and by equation (2.10) otherwise.

(b) Hyperbolic structure of the equations
The system of governing equations (2.1) can be written compactly as

∂q
∂t

+ ∂fx(q)
∂x

+ Wx(q)
∂q
∂x

+ ∂fy(q)
∂y

+ Wy(q)
∂q
∂y

= ϕ(q), (2.17)

where q = (h, hu, hv, hm, pb)T, ϕ = (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5)T and the functions fx, fy : R
5 → R

5 are fluxes of
q in the x- and y-directions, respectively. The matrix-valued functions Wx,Wy : R

5 → R
5×5 contain
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the multiplicative terms in (2.1) not contained in the fluxes. The explicit forms of fx(q), fy(q),
Wx(q) and Wy(q), which can be determined by inspection of (2.1), are shown in appendix B. By
noting that

∂fx(q)
∂x

= ∂fx(q)
∂q

∂q
∂x

(2.18a)

and
∂fy(q)
∂y

= ∂fy(q)
∂q

∂q
∂y

, (2.18b)

where ∂fx,y(q)/∂q : R
5 → R

5×5 are the Jacobian derivatives, equation (2.17) can be written as

∂q
∂t

+ Ax(q)
∂q
∂x

+ Ay(q)
∂q
∂y

= ϕ(q), (2.19)

where

Ax,y(q) = ∂fx,y(q)
∂q

+ Wx,y(q). (2.20)

There is extensive literature on the mathematical properties and numerical solution of systems of
form (2.19), particularly for conservative systems, where Wx,y(q) ≡ 0 (e.g. [17]). Non-conservative
systems, in which Wx,y(q) �= 0 applies, can pose additional challenges related to determining
generalized discontinuous solutions, which cannot be based on standard Rankine–Hugoniot
jump conditions derived from conservation laws (e.g. [18,19] and appendix B).

Desirable stability properties and well-posedness of systems having the form of (2.19)
(neglecting the source term ϕ) are established by hyperbolicity in the eigenstructure of Ax(q)
and Ay(q) (e.g. [20,21]). The system is hyperbolic if, for all unit vectors (nx, ny)T and admissible
solutions q, the matrix

nxAx(q) + nyAy(q) (2.21)

is diagonalizable with real eigenvalues (e.g. [17]). Determining hyperbolicity for two-dimensional
systems (2.19) is equivalent to considering cases in which the solution varies in a single yet
arbitrary direction, performing a change of coordinates aligned in that direction, and then
determining the hyperbolicity of the resulting one-dimensional system. Because system (2.1) is
invariant with respect to the choice of coordinate axes, without loss of generality, we can restrict
our analysis of hyperbolicity to the system

∂q
∂t

+ Ax(q)
∂q
∂x

= ϕ(q), (2.22)

by determining the eigenstructure of Ax(q). For system (2.1), we find

Ax(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

−u2 + κgzh 2u 0 0
h(1 − κ)

ρ

−uv v u 0 0
−um m 0 u 0

−χρgzu χρgz 0 0 u

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.23)

The eigenvalues of Ax(q) can easily be verified to be

λ1,2,3,4,5(q) = u −
√

gzhϑ , u, u, u, u +
√

gzhϑ , (2.24)

where ϑ = χ + (1 − χ )κ . Equation (2.3) and ρf ≤ ρ imply that 3/4<χ ≤ 1, which, with κ > 0,
implies that ϑ must remain positive. All of the eigenvalues (2.24) are therefore real, with

λ1(q)<λ2,3,4(q)<λ5(q). (2.25)
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Since the eigenvalue u has an algebraic multiplicity of three, hyperbolicity requires three
independent eigenvectors associated with λ2,3,4(q). The eigenvectors are

r1,2,3,4,5(q) =

⎡
⎢⎢⎢⎢⎢⎣

1
u −√

gzhϑ
v

m
χρgz

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

κ − 1
u(κ − 1)

0
0

κρgz

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

1
u +√

gzhϑ
v

m
χρgz

⎤
⎥⎥⎥⎥⎥⎦ . (2.26)

The eigenvectors r2,3,4(q) are linearly independent for all q, implying that Ax(q) is diagonalizable
with real eigenvalues for all admissible q. Therefore, (2.1) is hyperbolic.

The wave structure of the five characteristic fields associated with the eigenpairs is revealing,
although not surprising. The first and fifth characteristic fields associated with λ1,5(q) and r1,5(q)
are genuinely nonlinear fields associated with propagation of waves at speeds ±√gzhϑ relative
to the flow velocity. The waves are similar to those exhibited by the shallow-water equations,
but modified by ϑ . This modification is due to the parameter κ , where ϑ = 1 if either κ = 1 or
χ = 1 (such as with a pure fluid with ρ = ρf). The remaining fields are linearly degenerate and
represent advection of v, m and pb at the flow speed u. In Riemann problems discussed in §3, the
nonlinear fields carry shocks or rarefactions, while the linearly degenerate fields carry moving
contact discontinuities between adjacent material states. This structure is similar to that of many
hyperbolic problems for which numerical techniques have been devised. For an overview of these
topics, see e.g. LeVeque [17].

The hyperbolicity of system (2.1) is due, in part, to our modelling of only a single
velocity field rather than independent fields for solid and fluid phases. Many two-phase
depth-averaged systems are known to lose hyperbolicity due to the appearance of complex
eigenvalues when phase velocity fields diverge past some threshold (e.g. [4,7,9]). This property
can render the governing equations unstable, and the loss of hyperbolicity must be prevented
numerically, often through techniques that limit the differences between solid and fluid velocity
fields. The unconditional hyperbolicity of our model equations (2.1), and the simple explicit
expressions (2.24) and (2.26) for the eigenpairs, facilitates the development of stable numerical
schemes, as briefly described in §3. For many two-phase depth-averaged models (e.g. [4,7,9]),
the eigenvalues must be estimated numerically. The model recently developed by Kowalski &
McElwaine [12] also maintains hyperbolicity and has a simple eigenstructure.

(c) Variable basal topography
The classical shallow-water equations [22] are derived by vertically depth-averaging three-
dimensional Euler equations in a standard Cartesian coordinate system and retaining the leading-
order terms implied by the thin-layer assumption. Variable basal surface topography, described
by z = b(x, y), introduces source terms into the momentum equations. For shallow flows on steep
slopes, errors from neglected terms in the standard derivation can grow with the slope magnitude,
and depth-averaging in a coordinate system with z normal to the basal surface can give a
better approximation. This is the approach advanced by Savage & Hutter [16,23] for granular
avalanches, and frequently adopted since. Such derivations commonly neglect some terms arising
from bed curvature, i.e. from variations in the slope inclination angle, θ [24]. More recently, depth-
averaged equations in more general surface-following curvilinear coordinate systems have been
derived using asymptotic analysis (e.g. [24–28]).

Regardless of the choice of coordinate system, errors related to the flow aspect ratio, the basal
slope and basal curvature are introduced during the depth-averaging process [16,24,27,29]. The
relative magnitude of these errors depends on the basal surface and flow properties, and on
simplifying assumptions used in the model derivation, which may be violated in the model’s
numerical application. The errors can be placed in two categories: errors related to neglected
physics and errors related to neglected metric terms. For instance, the slope inclination angle
θ (x, y) can be allowed to vary in order to accommodate a curving basal surface, while neglecting
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terms needed to accurately express conservation. The resulting errors grow with the magnitude of
the curvature, but may be smaller than other terms neglected in the model derivation [16,24,27].
For flow on steep and curving surfaces, an approximation used in nearly all depth-averaged
models diminishes their physical fidelity: flow acceleration in the direction of depth-integration
is assumed to be negligible. In general, curvilinear coordinates, some bed-normal centripetal
acceleration effects can be retained by expressing the basal normal force as a curvature-dependent
pseudo-force. For Coulomb materials, this basal pseudo force can modify the basal frictional
resistance, which can generate the leading-order effect of curvature [16,26].

Natural debris flows occur in topography with potentially large curvatures and irregularities.
However, the suitability requirements of a curvilinear coordinate system impose restrictions on
the surface in terms of smoothness and curvature relative to the flow thickness. For a coordinate
system following a surface S ⊂ R

3, real topography must generally be represented by a function
z = b(x, y), where z is measured normal to S from b at the curvilinear coordinates (x, y) (e.g. [26]).
This representation introduces source terms in the momentum equations similar to those in the
standard shallow-water equations. The momentum source terms in (2.4) then become

ϕ′
2(q, x, y) = ϕ2(q) − gzh

∂b
∂x

(2.27a)

and

ϕ′
3(q, x, y) = ϕ3(q) − gzh

∂b
∂y

. (2.27b)

This is the approach we take for small topographic features that deviate from the planar surface
of the flume bed we describe in §4. We also follow the approach of Savage & Hutter [16] and Gray
et al. [26] by including a correction to basal Coulomb resistance due to an apparent centrifugal
force by replacing the x-component of equation (2.10) with

τs,x =
(

1 + u2

gzR

)
σe tan(φ + ψ)

u
‖(u, v)T‖ , (2.28)

where R is the radius of curvature in the downslope (x) direction. Similarly, as in [16,26], we
neglect other geometric terms arising from curvature, and simply allow θ to vary as a function of
only x. This variation implies a spatial dependence of gz(x), which does not alter the conclusions
drawn in §2b. Deriving improved depth-averaged models that more accurately accommodate the
physical effects of complex topography is an active research pursuit (e.g. [24,26–28]). Because our
model is tested in §4 with the simple basal surface of the concrete flume, we postpone this issue
for future studies.

3. Numerical methods and D-Claw software
General hyperbolic systems such as (2.19) present well-known numerical challenges and require
specialized algorithms in order to obtain stable and convergent solutions (e.g. [17,30–33]). Most
notably, the equations allow the development of non-unique discontinuous solutions requiring
suitable numerical schemes that can converge stably to the correct solution. A variety of such
methods have been developed over the past several decades (e.g. LeVeque [17] for an overview),
many based on shock-capturing Godunov methods [30]. Our algorithms belong to this class and
are implemented in a software package (named D-Claw), which contains features tailored to
modelling depth-averaged flows over topography. D-Claw is an extension of the CLAWPACK

software package [34], an open-source project for solving general hyperbolic problems (e.g.
[17,35–37]).

In the following sections, we provide a brief overview of our computational algorithms, with
emphasis on features particular to our debris-flow equations (2.1). Background material and a
detailed description of the algorithms are provided in the references cited.
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yj + 1/2

yj – 1/2

xi – 1/2 xi + 1/2

Cij

Figure 1. Depiction of part of a uniform, rectangular Cartesian finite volume grid, indicating an arbitrary grid cellCij.

(a) Shock-capturing finite volume methods
The numerical schemes in D-Claw are finite volume methods implemented on logically
rectangular grids. We denote an arbitrary grid cell Cij, which covers the rectangle (xi−1/2, xi+1/2) ×
(yj−1/2, yj+1/2), with area |Cij| (figure 1). The numerical solution

Qn
ij ≈ 1

|Cij|
∫
Cij

q(x, y, tn) dx dy (3.1)

is defined as a piecewise continuous function, constant in each grid cell.
Our numerical integration schemes are based on wave-propagation algorithms [17,38]

developed for systems of form (2.19). These are high-resolution (i.e. formally second-order
accurate and shock-capturing) Godunov-type methods, meaning that they use solutions to
Riemann problems computed at grid-cell interfaces. For instance, between grid cells Ci−1,j and
Ci,j, an analytical solution to the system of PDEs (2.19) with initial conditions

q(x, y, tn) =
⎧⎨
⎩Qn

i−1,j, if x ≤ xi−1/2,

Qn
ij, if x> xi−1/2

(3.2)

is sought. Analogous Riemann problems at all grid cell interfaces must be solved to update the
solution from tn to tn+1. (For convenience, in this section we focus on the Riemann problem
between Ci−1,j and Cij. For Riemann problems in the y-direction, modification of the formulae
that follow is straightforward.)

Nonlinear Riemann problems are commonly approximated by using, for example, a local
linearization of the matrix Ax(q) based on the initial states Qn

ij and Qn
i−1,j. That is, the solution

is determined for the linear system

∂q
∂t

+ Ax(〈Qn
i−1,j, Qn

ij〉)
∂q
∂x

= 0, (3.3)

where 〈Qn
i−1,j, Qn

ij〉 is a constant solution vector based on some combination of Qn
ij and Qn

i−1,j. The
exact solution to this linear Riemann problem is determined by the decomposition

Qn
ij − Qn

i−1,j =
P∑

p=1

ω
p
i−1/2,jr

p(〈Qn
i−1,j, Qn

ij〉), (3.4)

where P denotes the number of equations in the system. Given hyperbolicity, the P eigenvectors
rp(〈Qn

i−1,j, Qn
ij〉) of Ax(〈Qn

i−1,j, Qn
ij〉) are linearly independent and hence the scalar coefficients

ω
p
i−1/2,j, for p = 1, . . . ,P , are uniquely determined. The Riemann solution is a similarity solution

with propagating jump discontinuities, ωp
i−1/2,jr

p(〈Qn
i−1,j, Qn

ij〉), for p = 1, . . . ,P , each moving at the
speed of the corresponding eigenvalue λp(〈Qn

i−1,j, Qn
ij〉).
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For conservative systems with Ax(q) = ∂fx(q)/∂q, the numerical update can be constructed from
the decomposition

fx(Qn
ij, xi, yj) − fx(Qn

i−1,j, xi−1, yj) =
P∑

p=1

β
p
i−1/2,jr

p(〈Qn
i−1,j, Qn

ij〉). (3.5)

The flux differencing in (3.5) provides a consistent method for spatially dependent flux
functions. More importantly, a consistent update based on (3.5) automatically satisfies numerical
conservation by using a similarity solution with dimensions of the flux (see Bale et al. [39]
for details). Numerical conservation of quantities transported by fluxes is required for general
convergence to discontinuous solutions [17,40,41].

If the system has a source term, ϕ(q, x, y), (3.5) can be modified to include its effect

fx(Qn
ij, xi, yj) − fx(Qn

i−1,j, xi−1, yj) −�xΦi−1/2,j =
P∑

p=1

β
p
i−1/2,jr

p(〈Qn
i−1,j, Qn

ij〉), (3.6)

where Φi−1/2,j is a consistent approximation to ϕ(q, x, y) at (xi−1/2, yj). The advantage of (3.6) over
treating the source term via operator splitting is due to the numerical preservation of steady
states that arise due to a balance of the spatial gradients on the left-hand side of (2.19) and the
source term on the right-hand side. Numerically maintaining these equilibria poses a subtle but
significant challenge, as the countervailling terms might be large in magnitude compared with
their difference (and hence ∂q/∂t). This well-known difficulty has given rise to ‘well-balanced
schemes’, which can accurately resolve balanced steady states, or small perturbations to such
(e.g. [39,42–47]). Prevalent equilibria of interest depend on the particular application. Examples
include a motionless pool of water lying over variable topography, a constant river-like flow, or,
in the case of debris flows, a stationary mass of debris poised on a slope. In the former cases,
the balance is dominated by pressure gradients and the momentum sources (2.27) due to variable
bottom slope. In the latter case of a static debris mass, the dominant balance includes normal-force
gradients, the large gravitational driving forces and Coulomb friction. For debris flows, initiation
from a static state occurs as a small perturbation to these large counterbalanced forces, leading to
a dynamic feedback that influences the ultimate flow mobility.

We distinguish terms in ϕ (equation (2.4)) by the following splitting:

ϕ = ϕA + ϕB, (3.7)

where ϕB = (0, 0, 0, 0,ϕ5)T is the pressure source term, and ϕA contains all other terms in (2.4) (and
in (2.27) in the case of variable topography b(x, y)). The dominant terms arising in ϕA represent
gravitational driving forces and frictional resistance—potentially large terms for the balanced
steady states described previously. The term ϕB represents relaxation of basal pore-pressure
towards a steady state, a term that is large when the solution is far from a steady state.

Our development of the Riemann solver for system (2.1) was guided by several criteria. First, it
is desirable to treat the transport of quantities due to fluxes in a numerically conservative fashion
(without introducing spurious mass, momentum, etc.) as well as include terms from the non-
conservative products directly in the Riemann solution. Additionally, the solver must possess
well-balanced properties with regard to important balanced equilibria, particularly static states.
Finally, the solver must generalize to Riemann problems at the flow front, between vacant and
inundated cells, without the appearance of spurious results such as negative depths or unphysical
oscillations. (There is extensive literature on solving similar ‘wet-dry’ Riemann problems for the
shallow-water equations (e.g. [37,47–50]).) Our solver is based on a decomposition of the form

fx(Qn
ij, xi, yj) − fx(Qn

i−1,j, xi−1, yj) + Wx( 1
2 (Qn

i−1,j + Qn
ij), xi−1/2, yj)(Q

n
ij − Qn

i−1,j)

−�xΦA
i−1/2,j =

5∑
p=1

β
p
i−1/2,jr

p
i−1/2,j, (3.8)
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where rp
i−1/2,j are approximations to rp(q), p = 1, . . . , 5, (equation (2.26)) based on the solution

states Qn
i−1,j and Qn

ij (described further below). The functions fx(q, x, y) and Wx(q, x, y) appear
in (2.17) and are shown explicitly in appendix B. (The explicit spatial dependence appears due to
gz, if θ is allowed to vary.) The decomposition (3.8) uniquely determines the coefficients βp

i−1/2,j,
for p = 1, . . . , 5. The Riemann solution can then be constructed from this decomposition and from
approximations for the eigenvalues, λp

i−1/2,j [39].
The solver is simplified somewhat if κ = 1, which was used for the computations described

in §4; here we consider that case exclusively. Note from (2.26) with κ = 1, that all of the
eigenvectors r2,3,4

i−1/2,j become unit vectors with only one non-zero component. Therefore, the

decomposition of the first two components of the left-hand side of (3.8) is entirely into r1
i−1/2,j

and r5
i−1/2,j, the nonlinear fields similar to those of the shallow-water equations. In fact, this

Riemann solver is equivalent to the shallow-water Riemann solver described by George [47] for
the mass and momentum equations, neglecting additional source terms. For the solid volume
fraction and the pore-fluid pressure, we only require the final two components of r1,5

i−1/2,j,

denoted by (r1,5
i−1/2,j)4,5. For these final two components, we use (r1

i−1/2,j)4,5 = (r1(Qn
i−1,j))4,5 and

(r5
i−1/2,j)4,5 = (r5(Qn

i,j))4,5. These formulae are warranted since v, m, ρ and χ , appearing in r1(q) and

r5(q), are constant through the waves in the nonlinear fields, and vary only across the contact
discontinuities carried by r2,3,4(q). The derivation of (r1,5

i−1/2,j)1,2,3 and λ
p
i−1/2, for p = 1, . . . , 5, is

beyond the scope of this paper but endows the Riemann solver with properties necessary for
wet-dry problems, shock capturing and physical admissibility (energy) requirements. George [47]
provides further details.

The term ΦA
i−1/2,j is an approximation to ϕ(q)A appearing in (3.7) and described previously.

The treatment of variable topography, the approximation of (2.27) in the definition of ΦA
i−1/2,j, is

described in detail by George [47] and is well-balanced with respect to steady states with constant
θ . Other terms approximated by ΦA

i−1/2,j are based on arithmetic averages of Qn
i−1/2,j and Qn

ij.
In static cases, net driving forces must exceed frictional bounds (2.15) in both cells (cf. [46]). To
account for the additional source term for pb, at each cell centre the system,

dQi,j

dt
= ϕB(Qi,j), (3.9)

is solved exactly as an exponential relaxation to an equilibrium pressure determined by the
ambient pressure and dilatancy.

The numerical update is constructed from the Riemann solutions using the wave-propagation
algorithms of LeVeque [51]. Details are beyond the scope of this paper, but are thoroughly
described for general hyperbolic problems by LeVeque [17,51]. Multiple splitting options are
available in D-Claw to account for wave propagation and (3.9). For the simulations described
in §4, we simply used Godunov splitting (e.g. [17]).

(b) Adaptive mesh refinement
Our numerical methods use adaptive mesh refinement (AMR), which allows efficient resolution
of flow dynamics by providing a discretization that evolves based on the numerical solution.
Our algorithms are an extension of patch-based, block-structured AMR originally developed
for general hyperbolic problems (e.g. [52,53]), and later specialized for depth-averaged flows
across topography, such as tsunamis and overland floods (e.g. [35–37]). With patch-based, block-
structured AMR, the domain is discretized on numerous rectangular grids, each associated with
a given level, l = 1, . . . , L, of spatial and temporal resolution. Preceding any time step tn → tn+1,
cells of a level-l grid can be dynamically refined into multiple level-(l + 1) cells, by predefined
cell-length ratios, rl

x, rl
y, and clustered into rectangular level-(l + 1) grids. Figure 2 illustrates a

single level-l grid cell, Cl
i,j, refined into 16 level-(l + 1) cells, with rl

x = rl
y = 4. Multiple grids are

arranged to form a patchwork surrounding features in the solution which need higher resolution.
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yj + 1/2

yj – 1/2

xi – 1/2 xi + 1/2

Ci
l
–1,j

Ci
l
,j – 1

Ci
l
+1, j

Ci
l
, j + 1 Ck,s

l + 1

Figure 2. Refinement of a single level-l grid cellC l
i,y into level-(l + 1) grid cellswith refinement ratios rlx = rly = 4. In a typical

simulation, higher refinement ratios are used with several levels of grid resolutions.

Refinement (and de-refinement) occurs adaptively and recursively, ideally achieving an optimal
grid resolution at each time and location in the domain.

Our simulations of debris-flow flume experiments presented in §4 illustrate the use AMR.
However, to appreciate the efficiency enhancements conferred by AMR, one must consider a
large-scale natural debris flow in mountainous terrain. Such a debris flow typically begins in a
relatively localized region where mass failure of a slope or steep stream bed occurs. The flow then
follows a complex route that may be difficult to anticipate in advance. At any given time, the
debris flow typically occupies only a small portion of even the smallest rectangular region that
bounds the ultimate path of the debris. During a computation, debris is absent in the vast majority
of the domain, implying that grid cells there should be as coarse as possible. Simply using static
discretizations with finer grid cells in regions where the debris is likely to go, based on the terrain,
confers some computational efficiency. However, ideally, grid cell sizes should evolve with the
flow because the optimal grid resolution is highly spatially and temporally dependent. For debris
flows, our AMR algorithms generate fine grids in regions just prior to the arrival of the flow front.
It is also possible to use even finer grids surrounding complex features where spatial gradients in
the solution are highest. The use of AMR for floods in natural and highly variable terrain, using
the shallow-water equations, is illustrated by George [37].

4. Numerical results
To test D-Claw, we present simulations of two types of large-scale experiments conducted at the
USGS debris-flow flume (figures 3 and 4). Detailed descriptions and video documentation of these
experiments are available elsewhere [14,15,54]. In contrast to natural debris flows, flume debris
flows involve tightly controlled initial and boundary conditions as well as material properties,
and thereby afford opportunities for stringent model tests. Moreover, experimental flows in the
USGS flume are large enough (typically 6–10 m3) to obviate most scaling problems [15].

In the first type of test, we address short-timescale dynamics during onset of debris-flow
motion triggered by gradually rising pore-fluid pressures in static slopes. In the second type,
we address dynamics over the longer timescales that are relevant during subsequent downslope
motion, runout and deposition. Traditionally, these two distinct problems have been treated with
dissimilar models, one for onset of slope instability and one for the dynamics of ensuing motion.
By contrast, D-Claw simulates both flow onset from an initially balanced equilibrium state and
flow dynamics in states that are far from equilibrium.

(a) Predictions of slope failure and flowmobilization
In this section, we investigate D-Claw’s ability to predict debris-flow mobilization from an
initially stable sediment mass. In each of the mobilization experiments of Iverson et al. [14], a
6 m3 rectangular prism of sediment composed mostly of sand, with 11% finer grains by dry
weight, was placed behind a retaining wall positioned normal to the bed near the top of the
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Figure 3. Photograph of theUSGeological Survey debris-flowflume inOregon, USA. The flume is 95 m long and 2 mwide.Most
of the bed slopes uniformly at 31◦. The photograph shows a 10 m3 gate-release flow,with the flow front at x ≈ 53 mdownslope
from the headgate approximately 5.3 s after the gate opened [15].

Figure 4. Photograph illustrating the initial condition of a 6 m3 sediment prism in a debris-flow mobilization experiment
conducted at the US Geological Survey debris-flow flume on 6 June 1999. Sediment is held in place by a bed-normal retaining
wall. See Iverson et al. [14] for details.
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Figure 5. Schematic vertical cross section of the initial geometry of the debris-flowmobilization experiments. Bed slope is 31◦.
See Iverson et al. [14] for further details.

flume (figures 4 and 5). A ramp downslope of the retaining wall provided a continuous basal
running surface for flows that overtopped it. Rising pore-water pressures that triggered slope
failure were generated by various combinations of surface sprinkling, infiltration from an upslope
pond and groundwater injection (cf. [55]). As pore pressures rose, water tables were maintained
nearly parallel to the impermeable flume bed by using a valve to adjust the water discharge
from a horizontal drain pipe buried in the sediment adjacent to the base of the retaining wall.
Evolving pore-water pressures and slope deformation were monitored continuously by a network
of piezometers, tensiometers, subsurface tiltmeters and surface extensometers [14].

The chief variable manipulated in these experiments was the initial bulk density of the
sediment prisms. In some experiments, the sediment was loosely placed by dumping it from
buckets with minimal disturbance, resulting in initial solid volume fractions m0 < 0.5. In other
cases, the sediment was densified by placing it in a series 10 cm thick layers and compacting
each layer with high-frequency mechanical vibrations, resulting in initial solid volume fractions
m0 ≈ 0.6. Ancillary testing revealed that the critical-state solid volume fraction for this sediment
at appropriately low confining stresses was about mcrit = 0.56 [14]. Therefore, initial states of
sediment in experiments with m0 <mcrit were classified as ‘loose’, while those in experiments
with m0 >mcrit were classified as ‘dense’.

During slope failure, loosely packed sediment quickly liquefied and transformed into rapid
debris flows (see video documentation of [54] for 6 June 1999). This behaviour resulted from
sediment contraction upon shearing, evidenced by a dramatic, contemporaneous increase in pore-
fluid pressure. With densely packed sediment, on the other hand, slope failures exhibited self-
stabilizing behaviour, because pore-fluid pressures decreased as the deforming sediment dilated.
In such cases, landslides crept slowly and sometimes intermittently downslope [14,54]. These
contrasting styles of behaviour test not only D-Claw’s ability to seamlessly simulate the transition
of a stable mass into a moving mass, but also the model’s ability to regulate evolution of pore-fluid
pressure and thereby influence the degree and nature of landslide mobilization.

(i) Mobilization experiment 1: loosely packed sediment (m0< mcrit)
We first consider model performance in simulating an experiment with loosely packed sediment.
To simulate the rising water table prior to slope failure, we gradually and uniformly increased
basal pore-water pressures so that they represented an increasing percentage of the total
lithostatic pressure acting on the basal slip surface. Tiltmeter data showed that most of the initial
failure surface ran along the concrete flume bed, but near the retaining wall the failure surface
curved upward to intersect the wall’s crest. We used this basal slip surface to define the initial
thickness distribution, h(x, y, 0), in D-Claw simulations (figure 5).
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Table 1. Values of model parameters and initial values of m and pressure head, pb/ρfgz , for mobilization experiments and
simulations.

property measured values model values

loose soil experiment
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial solid volume fraction,m0 0.48 ± 0.02 0.48
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

critical state volume fraction,mcrit 0.56 ± 0.03 0.56
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

basal fluid pressure head at failure (cm) 26 ± 2 0, 26
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

friction angle,φ 29◦ ± 2◦ 29◦, 38◦
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial elastic compressibility,α0 10−7–10−2 b 5.7 × 10−6, 7.2 × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial hydraulic permeability, k0 (m2) (2.6 ± 0.7) × 10−11 a 2.6 × 10−11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pore-fluid viscosity,μ (Pa-s) 0.001 0.001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pore-fluid density,ρf (kg m−3) 1000 1000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

solid density,ρs (kg m−3) 2700 2700
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dense soil experiment
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial solid volume fraction,m0 0.59 ± 0.01 0.59
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

critical state volume fraction,mcrit 0.56 ± 0.03 0.56
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

basal fluid pressure head at failure (cm) 48 ± 5 43
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

friction angle,φ 41◦ ± 2◦ 41◦
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial elastic compressibility,α0 10−7–10−2 b 2.0 × 10−6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial hydraulic permeability, k0 (m2) (2.3 ± 0.05) × 10−12 a 2.3 × 10−12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pore-fluid viscosity,μ (Pa-s) 0.001 0.001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pore-fluid density,ρf (kg m−3) 1000 1000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

solid density,ρs (kg m−3) 2700 2700
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aDetermined from the hydraulic conductivity, K (k = Kμ/ρfg), reported by Iverson et al. [14].
bPlausible full-scale range [1].

Measured soil properties and corresponding values of parameters used to simulate the
loose-soil experiment are listed in the upper half of table 1. The only complication in using
these parameter values involves interpretation of the effective friction angle. Based on triaxial
unloading tests of loose sediment specimens, Iverson et al. [14] inferred values of 29◦ ± 2◦ for
the effective sediment friction angle during failure. This value differs negligibly from the basal
friction angle measured as sediment begins to slide along a smoothly finished concrete surface
like that underlying the soil prisms in the flume [14]. However, some of our computations used
φ = 38◦ as the basal friction angle in order to reproduce the pore-fluid pressure head ≈ 0.26 m
measured when slope failure occurred. The high effective friction might be due to sediment
settling observed during the pre-failure wetting process, with resultant increases in sediment bulk
density and frictional strength. Another contributing factor might be non-negligible sidewall
friction. In our simulations, the flume sidewalls are modelled as topographic features without
other distinctive properties, and because the walls are vertical, no basal friction is engaged
there. Fortunately, the use of φ = 29◦ versus φ = 38◦ in our simulations has little effect on short-
timescale dynamics immediately following slope failure, because the effects of intrinsic friction
are overwhelmed by those of evolving pore pressure.

Computational results are illustrated in figures 6 and 7. Upon failure, the value ψ = −4.57◦
applies in order to satisfy equation (2.12) with the measured values m0 = 0.48 and mcrit = 0.56.
Physically, however, ψ has no relevance until an infinitesimal displacement occurs. As failure
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Figure 6. Cross-sectional perspective of a D-Claw simulation of the loose soil experiment (φ = 38◦, a= 0.3). Basal pore
pressure is indicated by the fractional depth of blue-shaded sediment, with lithostatic pressure indicated by full blue shading.
The position of extensometers and the piezometer used to gaugemodel predictions are shownwithmarkers. These sensors are
motionless until t = 0, after which they move with the sediment (see electronic supplementary material).

begins, we impose the negative dilatancy at locations where there is non-zero motion, and the
resultant slight weakening of the sediment qualitatively mimics behaviour observed in laboratory
testing of loose, contractive soils (e.g. [56,57]). More significantly in our computations, however,
negative dilatancy can lead to pore-pressure feedback that results in profound weakening
associated with liquefaction.

Slope failure in the model is detected when non-zero momentum occurs at any location, after
which changes in pore-fluid pressure are no longer imposed, but instead are allowed to evolve
according to the model equations. Upon failure, sediment in the region −2 m< x< 0 begins to
deform, accompanied by a co-localized rise in pore pressure. The region of deforming sediment
then expands upslope, accompanied by rapidly increasing pore pressures that reach lithostatic
levels (pb = ρgzh) within a few seconds (see figure 6 and electronic supplementary material).
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Figure 7. D-Claw model output (solid lines) compared with time series of extensometer data and piezometer data measured
with instruments at initial depths of 65, 50 and 30 cm in the loose soil experiment (dashed lines) compared to corresponding
D-Claw output (solid lines). Experimental data in the left and right panels are plotted on the same temporal axes, respectively.
D-Claw output using φ = 38◦ and a= 0.3 is shown in panels (a,b), and output using φ = 29◦ and a= 0.03 is shown in
panels (c,d). Data from [14].

Displacement and pore-pressure time-series data collected during the experiment are
compared to D-Claw output in figure 7. Because instruments moved downslope with the
sediment, the D-Claw results were produced by following Lagrangian material points positioned
at the same initial locations as the instruments. Determining the position of, and pressures at,
the moving material points involved dynamically integrating and interpolating the Eulerian
numerical solution. It is impossible to ascertain the exact time of failure in the experiment, owing
to some preliminary settling of the soil and the positioning of isolated detection instruments. In
figure 7, t = 0 s corresponds to t = 2781.1 s in the experimental dataset presented by Iverson et al.
[14]. The temporal axes for the model results are chosen to align with the experimental data, based
on when the basal pore pressure sensor moved over the downslope retaining wall. Displacements
of the extensometers are plotted on these same temporal axes.

The evolution of the pore-fluid pressure at Lagrangian points was found to vary based on
the initial value of the elastic compressibility, α0. Because this parameter is difficult to constrain
experimentally, we used two values for a in equation (2.8), which is used to calculate α. Although
most data from quasi-static soil testing suggest that 0.01 ≤ a ≤ 0.05 [1], we found that a larger
value reproduced the measured slope-failure dynamics more closely (figure 7). Nevertheless, the
initially higher compressibility, α0 = 7.2 × 10−5 Pa−1 with a = 0.3, lies well within the range of
plausible values for shearing debris [1], and in simulations the evolving value of α maintains the
same order of magnitude.
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Figure 7a,c compare computed pore-fluid pressures with data collected using a piezometer
initially positioned at the base of the sediment (65 cm deep) 1.9 m upslope from the retaining
wall, and with data from two piezometers directly above it at vertical depths of 30 and 50 cm [14].
The simulated pressure for these depths is determined by scaling the computed basal pressure
according to the vertical pressure profile derived by Iverson & George [1]. The right panels show
the position of two ground surface extensometers, initially located 3.07 and 0.71 m upslope from
the retaining wall. The upper and lower panels correspond to the different values of a and φ

employed in alternative simulations (a = 0.03, φ = 29◦ and a = 0.3, φ = 38◦). In both cases, the
key features of interest are the elevated values of pore-fluid pressures that rapidly developed
as the mobilized sediment contracted and then overtopped the retaining wall. The larger pore-
fluid pressures calculated with a = 0.03 and φ = 29◦ (lower panels) resulted from persistence of a
greater thickness of sediment, and hence higher basal pressure head, as sediment moved towards
the retaining wall. The case with a = 0.3 and φ = 38◦ resulted in greater variability in velocities
at different locations and a corresponding longitudinal extension and thinning of the moving
sediment slab. This resulted in reduced depths of sediment flowing over the retaining wall. In
both simulations, the debris became fully liquefied, and pore pressures dropped abruptly after
sediment moved over the retaining wall.

(ii) Mobilization experiment 2: densely packed sediment (m0> mcrit)
Next, we consider a dense soil experiment described by Iverson et al. [14]. Our main
motivation for including this experiment is to explore the degree to which D-Claw can simulate
fundamentally disparate dynamics due to different initial states of the sediment alone. In the
dense case, the initial porosity was significantly reduced due to systematic compaction during
sediment placement. This compaction in turn affected some of the soil properties, such as the
permeability and effective basal friction angle. Otherwise, the experimental procedure was very
similar to that of the loose soil experiment described above. The experimentally measured and
model parameters are shown in the lower panel of table 1. In contrast to the loose soil experiment,
the initial solid-volume fraction, m0, is higher than the critical solid-volume fraction, mcrit,
indicating positive dilatancy.

In the experiment, deformation first occurred when the basal pore-fluid pressure head
exceeded 45 cm (considerably higher than for the loose soil experiment). The resulting landslide
exhibited dynamics that differed dramatically from those of the loose soil case [14]. The sediment
underwent slow episodic motion over a protracted period of time (15 min). Brief episodes of
incremental deformation produced displacements of less than 0.3 m, with a total displacement
of less than 1.5 m. This behaviour was due to the dilative response of the denser soil, which
reduced the pore-fluid pressure during deformation, acting to retard motion [14]. The pore-
fluid pressure slowly rebounded after each precipitous drop, leading to semi-periodic stick–
slip cycles.

As in the loose soil case, we simulated the dense soil experiment by gradually raising the
pore pressure to the point of slope failure. The basal pressure head triggering failure at t = 0
was approximately 43 cm, slightly lower than the pressure observed in the experiment. For
comparison, we also performed a simulation with an initial basal pressure head of 45 cm, the
pressure observed experimentally when failure commenced. The results were similar in each case.
A cross-sectional perspective of the simulation is shown in figure 8. Displacements observed in
the first 60 s of simulated time are nearly undetectable in figure 8, but are responsible for slight
downslope movement.

The D-Claw simulation exhibited the slow, episodic creeping motion similar to that observed
experimentally. Figure 9 shows a time series of the pore pressure and displacement of a
Lagrangian material element. Note that the sediment moves only centimetres in 120 s—a very
slow rate compared with the loose soil case. The time-averaged velocity (the total displacement
per duration) of ≈ 1 mm s−1 was similar in the experiment and the simulation [14]. Small stick–
slip cycles that are evident in figure 9 have periods more brief than those observed in experiments,
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piezometer (figure 8) for the dense soil experiment.

probably because motion was continually driven in the experiments by continually adding pore
water. In the simulation, such water addition is not considered, and the evolving pore pressure
slowly declines. More-detailed analysis of stick–slip behaviour in the absence of water addition
is provided by Schaeffer & Iverson [58].

(b) Predictions of downslope debris-flow dynamics
In this section, we investigate D-Claw’s ability to predict debris-flow dynamics, runout and
deposition measured in a set of flume experiments reported by Iverson et al. [15]. In these
experiments, loose sediment was placed in a hopper behind a vertical gate near the top of the
flume, saturated with water, and released by suddenly opening the gate (figures 3, 10 and 11).
Upon releasing the headgate, the saturated mixtures quickly liquefied and developed into debris
flows that descended the flume channel before emerging onto a nearly planar runout pad and
forming deposits.

We focus on the mean behaviour measured in an aggregated set of eight experiments
referred to as sand–gravel–mud (SGM) experiments due to the composition of the sediment,
which contained about 6% mud-sized particles by dry weight [15]. Once motion commenced,
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t = 0.7 s t = 0.9 s t = 1.5 s

Figure 10. Sequential photographs of the initial stages of a gate-release experiment at the USGS debris-flow flume. See [15]
and video documentation [54] for further details.
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Figure 11. Schematic vertical cross-section of the initial sediment geometry in the gate-release experiments. Ten cubic metres
of sediment is retained behind a vertical headgate at x = 0, saturated with water, and then released.

persistent suspension of these particles enhanced the effective pore-fluid viscosity. This enhanced
viscosity has been shown to increase debris-flow mobility by facilitating maintenance of high pore
pressures [10,15].

The simulation parameters and corresponding values of sediment properties measured in
conjunction with the SGM experiments are shown in table 2. Values of all parameters used in
the D-Claw simulation matched experimentally determined values, except for that of the initial
hydraulic permeability k0, which was chosen to be about two orders of magnitude larger in the
simulation (although still within the typical range for loose soils [59]). Our rationale for using
a higher value was partly that k0 was measured in static debris, whereas agitation of rapidly
moving debris transiently opens pores and thereby facilitates fluid flow with respect to adjacent
solid grains. We discuss our choice of k0 further below.

Oblique views of the D-Claw simulation during the initial stages of a gate release experiment
are shown in figure 12 and in the accompanying animation. The opening of the gate was simulated
by using an evolving function, b(x, y, t), for the basal elevation in the model, representing the
height of the laterally pivoting doors. Because of our model coordinate system, the doors were
assumed to be normal to the bed rather than vertical. Videotape footage from several experiments
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Table 2. Values of physical parameters in eight gate-release experiments and the corresponding simulation.

property measured values model value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial solid-volume fraction,m0 0.61 ± 0.04 0.62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

critical state volume fraction,mcrit ≈ 0.64a 0.64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

basal fluid pressure head at failure hydrostatic hydrostatic
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

basal friction angle,φ 40.7◦ ± 2.1◦ 40.7◦
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial elastic compressibility,α0 10−7–10−2 b 2.0 × 10−6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial hydraulic permeability, k0 (m2) 4.0 × 10−12–4.0 × 10−11 5.0 × 10−9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pore-fluid viscosity,μ (Pa-s) 0.001–0.05 0.005
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pore-fluid density,ρf (kg m−3) 1100 1100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

solid density,ρs (kg m−3) 2700 2700

aEstimated from soil measurements reported by Iverson et al. [15].
bPlausible full-scale range [1].

was analysed in order to approximate the speed of gate opening, which occurs in about 0.85 s.
Based on comparisons with dam-break initial conditions (i.e. an instantaneously opened gate),
we found that including the effect of the finite gate opening speed had an important influence on
the first stages of flow evolution (figure 13).

Aggregated time-series data reported by Iverson et al. [15] provide a basis for straightforward
comparison with our D-Claw simulation. In figures 13 and 14, grey shading represents the
mean ±1 s.d. measured in eight experiments. Figure 13a compares the measured flow depth at
x = 2 m with model results obtained with and without the simulated motion of the headgate. Note
that the gate slightly impedes the flow, resulting in a delayed and more abrupt rise in thickness
as most of the flow reaches x = 2 m. Figure 13b shows the computed basal pore-fluid pressure pb,
compared to the lithostatic and hydrostatic pressure for the computed thickness h, illustrating the
high degree of liquefaction at early times. Measurements of the basal pore-fluid pressure in the
experiments were not obtained at x = 2 m.

Figure 14 compares measured and computed time series that depict flow thicknesses and pore-
fluid pressures at two downslope locations, x = 32 and 66 m. Amplitudes compare well in most
of the time series, but the speeds of computed flows begin to outpace those of experimental
flows by the time they reach x = 66 m. The resultant error in flow-front arrival-time is only
about 1 s, however. Another timing discrepancy exists with respect to pore-fluid pressure. In
the experimental data, particularly for x = 66 m, the arrival of the flow front precedes the arrival
of positive pore-fluid pressures by roughly 1 s. This delay in pore-pressure response is absent
in the computational results but is commonly observed in debris flows. It results from particle-
size segregation that creates a highly permeable, dilated, coarse-grained front that cannot sustain
high pore-fluid pressure [10,15,60]. High-friction fronts thereby act to impede motion of the
more liquefied flow body that trails them, resulting in reduced flow-front propagation speeds.
This behaviour partly motivated our use of an enhanced permeability in the model, which
globally increased the relaxation rate of fluid pressures. Indeed, in the computational results pore
pressures relaxed to nearly hydrostatic levels after 4 s, while they remained at nearly lithostatic
levels in regions behind the high-friction fronts of the experimental flows. In essence, the high
model permeability partly compensated for D-Claw’s inability to simulate high-flow resistance
in pressure-depleted flow fronts, but it caused excessive pore-pressure relaxation in flow tails.
Remedying this shortcoming by extending the model to simulate particle size segregation is
therefore a priority.

The final state of debris-flow motion involves deceleration and formation of static
deposits. Figure 15 illustrates our simulation of this process on the run-out pad at the foot of
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t = 0 s

t = 0.60 s

t = 0.40 s

t = 0.80 s

t = 1.00 s

pb = 0 pb /rgzh = 1

t = 2.00 s

Figure 12. Oblique perspective of the simulated opening of the flume headgate. The colour scale for basal pore-fluid pressure
indicates that the sediment liquefies during the early stages of motion, except near the dilating flow front. (See electronic
supplementary material.)

the flume. The flow front reaches its ultimate downslope distance from the headgate (x ≈ 112 m)
at t ≈ 12 s. Subsequently, additional debris continues to advance onto the run-out pad, leading to
a gradual accumulation of material and a maximum deposit thickness of h ≈ 18 cm at x ≈ 106 m.
This behaviour mimics that observed in experiments [15,54], but direct quantitative comparisons
are complicated by the variability of the experimental results, illustrated in figure 16. A consistent
pattern is that the experimental deposits underwent less lateral spreading than in the simulation,
however. This discrepancy is due to the presence of lateral levees of coarse-grained high-friction
material that helped confine and channel runout of the experimental flows. This phenomenon,
which results from grain-size segregation, has been observed and studied extensively (e.g. [60])
but is not yet included in D-Claw. Despite the lack of a segregation mechanism, the model
does possess some ability to produce levee-like effects owing to higher basal shear resistance
in shallow lateral flanks of the decelerating debris. In the model, this behaviour results from
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Figure 13. Comparison of time series for the flow depth at x = 2 m downslope from the flume headgate. Panel (a) shows
aggregateddata (grey shading) and the computedflowdepthhwithandwithout including the simulatedgatemotion. Panel (b)
shows the computed basal pore-fluid pressure pb and the lithostatic and hydrostatic pressures corresponding to the computed
depth with the simulated door opening. Data from Iverson et al. [15].
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Figure 14. Comparison of time-series data from Iverson et al. [15] with simulation results for gate-release experiments. Left
and right panels depict results for x = 32 m and x = 66 mdownslope from the headgate, respectively. Upper and lower panels
show the flow thickness h and basal pore-fluid pressure pb, respectively. The lithostatic reference pressure in the simulations is
shown to indicate the degree of debris liquefaction. Aggregated experimental data are shown with grey shading that depicts
mean values± 1 s.d. for 8 SGM experiments.

enhanced relaxation of pore pressure where low values of velocity and depth exist. As can be seen
in figure 15 after ≈ 12 s, wing-shaped levees form as deposited lateral material remains immobile
while most of the mass continues to move forward near the centre of the flow (bottom panels
of figure 15).

(c) Gauging model behaviour with dimensionless parameters
Representation of the dynamics of flowing debris by D-Claw is fundamentally affected by
three dimensionless combinations of parameters, as well as by an initial condition characterized
by m0 − mcrit (i.e. the initial dilatancy) [1]. Values of these parameters for the three types of
simulations described above are shown in table 3. From top to bottom, the quantities represent
the tangent of the initial dilatancy angle, a ratio of timescales for downslope motion and pore-
pressure diffusion, a normalized debris compressibility and a reciprocal Reynolds number.
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Figure 15. Overhead view of the final stages of the D-Claw gate-release simulation, showing the advance and deposition of
debris on the runout pad. Plot shading indicates debris thickness, h, with contours at 2 cm intervals. Three levels of AMR grids
are shown, with grid lines removed from the finest grids.

Because the initial stages of motion were of primary concern for the mobilization experiments,
values of H = 0.5 m and L = 5 m were used in table 3 for depth and length scales based on the
initial debris profile for those experiments. For the gate release experiments, downslope motion
was of primary concern and hence H = 0.1 m and L = 100 m were used, roughly corresponding to
the dimensions of a fully developed debris flow in the flume.

Among all of the values of the dimensionless parameters listed in table 3, the greatest contrast
exists in the values of the motion-to-diffusion time-scale ratios. For the gate release experiments,
a relatively large value of permeability as well as small value of H/L leads to a much larger
motion-to-diffusion time-scale ratio than in the mobilization experiments. A consequence of this
large time-scale ratio was relatively rapid depletion of the high pore-fluid pressures that were
generated by debris collapse and contraction during opening of the flume headgate. This rapid
depletion increased basal friction and regulated flow dynamics in the manner described in the
preceding section. As noted there, widespread pore-pressure depletion only partially mimics the
effects of grain-size segregation, which are currently lacking in D-Claw.

The values of the final three dimensionless parameters in table 3 are of similar magnitude for
the mobilization experiments with dense and loose initial states. The small difference in values is
primarily due to the larger baseline permeability for the loose soil case (k0 = 2.6 × 10−11 versus
2.3 × 10−12), which is a result of higher initial porosity. Therefore, the dramatically disparate
results for the loose and dense case can be attributed to the initial dilatancy angles, which are
opposite in sign as indicated by the values of m0 − mcrit in table 3.
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Figure 16. Overhead view ofmapped deposits of SGM debris flows on the flume run-out pad. Contours of deposit thickness are
in 2 cm intervals (adapted from [15]).

Table 3. Comparison of values of dimensionless model parameters used in the simulations.

mobilization
simulationsb

dimensionless plausible gate release
quantity range of valuesa loose dense simulationc

m0 − mcrit −0.2–0.2 −0.08 0.03 −0.02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k0(L/g)1/2

α0μH2
10−9–104 5 × 10−3 2 × 10−3 1 × 102

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α0ρ0gH 10−3–10−1 3 × 10−2 1 × 10−2 1 × 10−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .μ

ρ0H(gL)1/2
<10−4 5 × 10−7 5 × 10−7 3 × 10−6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aRange includes pairs H = 0.1 (m), L= 100 (m) and H = 0.5 (m), L= 5 (m). See table 2 in [1].
bH = 0.5 (m) and L= 5 (m).
cH = 0.1 (m) and L= 100 (m).

5. Concluding remarks
In this paper, we show that the depth-averaged debris-flow model derived in our companion
paper [1] constitutes a non-conservative hyperbolic system of partial differential equations with
source terms. Additionally, the eigenstructure of the system has a familiar form, with two
nonlinear characteristic fields similar to those of the shallow water equations and three contact
discontinuities with propagation speeds equal to the flow velocity. The eigenstructure is simpler
than that of many two-phase models, such as that derived by Pitman & Le [4], and it avoids
elliptic degeneracy.
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Notwithstanding the simplicity of its eigenstructure, as a hyperbolic system the model
presents well-known challenges for numerical solution schemes. Additional numerical challenges
arise owing to the presence of moving flow boundaries and variable topography. Numerous
specialized techniques have been developed previously to overcome these challenges for the
shallow-water equations, and we have adapted such techniques to our debris-flow model in the
form of the software package D-Claw.

D-Claw employs the concept of granular dilatancy, which encapsulates the tendency of the
solid volume fraction to evolve towards a value that is equilibrated to the ambient flow rate
and effective-stress state. This evolution enables D-Claw to unify models for slope failure and
flow initiation with those for debris-flow dynamics. Inclusion of dilatancy also results in novel
evolution equations for the solid volume fraction and pore-fluid pressure, which are tightly
coupled through source terms. Because of the inherent sensitivity associated with the transition
from a stable debris mass to a dynamic debris flow, it is necessary for the numerical schemes
in D-Claw to reliably and stably resolve balanced steady states. For debris flows, the prevalent
steady state arises from the counterbalance of longitudinal normal-force gradients, gravitational
driving forces and basal shear resistance, the latter of which is strongly dependent on the evolving
fluid pressure. Flow initiation occurs when this balance is slightly perturbed. In order to resolve
this perturbation and the resulting dynamics accurately, D-Claw requires a specialized Riemann
solver and a carefully designed splitting of the source term.

Comparisons of D-Claw model output with results from two types of large-scale experiments
indicate that the model can successfully simulate key features of debris-flow mobilization as well
as debris-flow dynamics, runout and deposition. Model results show that in many cases the effects
of persistent high pore pressure strongly suppress the effects of basal Coulomb friction, which
is the primary source of flow resistance. This finding is consistent with experimental and field
observations indicating that reduction of friction by high pore-fluid pressure is largely responsible
for debris flows’ remarkable mobility.

Model comparisons with results of natural-release experiments focus on triggering of debris-
flow motion by externally imposed, gradually rising pore-water pressures. In the case of loosely
packed soil, D-Claw simulations mimic debris-flow behaviour in mobilization experiments
in which negative dilatancy and positive pore-pressure feedback allow a local instability to
grow rapidly, thereby causing wholesale slope liquefaction and runaway motion within a few
seconds. In the case of densely packed soil, by contrast, simulations show that negative pore-
pressure feedback due to positive dilatancy stabilizes motion and gives rise to slow, intermittent
downslope creep. Model results imply that debris-flow mobilization in such scenarios is, at most,
a relatively slow, piecemeal process.

Model comparisons with results of gate release experiments involve initial conditions that
closely parallel those in classical dam-break problems. However, D-Claw output shows that
model results best match experimental data if the finite opening speed of the gate is included
in the simulation. Flow dynamics during the first approximately 1 s of motion, when debris
settlement and liquefaction are triggered by opening of the gate, set the stage for ensuing flow
behaviour downslope. Model predictions of evolving flow depths and basal pore-fluid pressures
closely match those measured 32 m downslope from the gate, but deviations between predictions
and measurements increase as flows proceed further downslope. We believe the primary source
of these deviations is the model’s lack of grain-size segregation effects. In experimental flows, this
segregation produces coarse-grained flow fronts that have high frictional resistance owing to high
fluid permeability and rapid relaxation of pore-fluid pressure. Our simulations lack the capacity
to generate this highly focused flow-front resistance, and further lack the capacity to reproduce
its effect on lateral levee development during flow runout and deposition. We anticipate that
the mathematical structure of D-claw will enable us to incorporate size-segregation effects in the
future, however.

All of our model predictions and comparisons provide evidence of a sensitive dependence on
initial conditions. In particular, the initial solid volume fraction and its implications for dilatancy
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and liquefaction during the onset of motion during natural flow releases are crucial. Indeed, a
fundamental bifurcation of behaviour (runway acceleration versus slow, regulated motion) can
result from rather minor differences in the initial state. Dependence of gate-release simulations
on the details of the gate-opening rate provides further evidence of the importance of initial
conditions. We infer that future modelling directed at practical hazard assessment should account
for uncertainties in initial states.

Along with their dependence on initial conditions, our D-Claw simulations depend strongly
on the values of just a few dimensionless parameters. Paramount among these is a time-scale
ratio that involves the characteristic times for downslope motion and pore-pressure diffusion.
Within these timescales, two physical properties play crucial roles. One is the Darcian hydraulic
permeability of the debris and the other is its compressibility (or reciprocal bulk modulus). Both
properties are likely to vary as a consequence of dilation and agitation of moving debris. Virtually,
no data or compelling theories exist to firmly constrain these variations, and D-Claw currently
treats the variations using simple postulates.

Appendix A. Correspondence of model equations
In this appendix, we demonstrate the correspondence of the governing equations, comprising
system (2.1) and source terms (2.4), with the equations derived in our companion paper [1]. In [1],
the governing equations were presented in their most physically revealing form. In this paper,
for analysis and description of numerical schemes, the hyperbolic system has been put in more
standard mathematical form. Additionally, form (2.1) provides the relevant fluxes for physically
based Rankine–Hugoniot conditions. Note that in this paper the overbars used to denote depth-
averaged quantities in [1] have been dropped.

(a) Momentum hū and hv̄
Beginning with equation (4.11) for hū in [1], we have

ρ

[
∂(hū)
∂t

+ ∂(hū2)
∂x

+ ∂(hūv̄)
∂y

]
− (ρ − ρf)Dū = ρgxh − ∂(τ̄xxh)

∂x
+ ∂(τ̄yxh)

∂y
− τzx(0). (A 1)

We neglect the transverse shear term ∂(τ̄yxh)/∂y. From eqn (4.30) in [1], we have

∂(τ̄xxh)
∂x

= κh
∂

∂x
(ρgzh − pb) + h

∂pb

∂x
= κh2gz

∂ρ

∂x
+ ρκ

∂

∂x

(
1
2

gzh2
)

+ h(1 − κ)
∂pb

∂x

≈ ρκ
∂

∂x

(
1
2

gzh2
)

+ h(1 − κ)
∂pb

∂x
, (A 2)

where the term due to the small longitudinal gradient in ρ is neglected in the final expression.
Inserting the final expression of (A 2) into (A 1), dividing by ρ and grouping spatial derivatives
on the left-hand side leads to

∂(hū)
∂t

+ ∂(hū2)
∂x

+ κ
∂

∂x

(
1
2

gzh2
)

+ ∂(hūv̄)
∂y

+ h(1 − κ)
ρ

∂pb

∂x

= (ρ − ρf)
ρ

Dū + gxh − τzx(0)
ρ

. (A 3)

Equation (A 3) is equivalent to equations (2.1b) and (2.4b). If κ is constant (i.e. if φint = φ in
eqn (4.32) in [1]) then it can be absorbed into the second spatial derivative and become part of the
flux fx(q), similar to the momentum flux in standard shallow-water models. The correspondence
of eqn (4.12) in [1] for hv̄ with that of (2.1c) and (2.4c) is entirely analogous to that of hū.
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(b) Basal pore pressure, pb
Eqn (4.25) in [1] for the basal pressure, pb, is

dpb

dt
+ 3k
αμh2 [pb − ρfgz] = ρfgz

ρ

D(ρ − ρf)
4

− gz(ρf + 3ρ)
4

[
h
(
∂u
∂x

+ ∂v

∂y

)]
− 3

√
u2 + v2

hα

[
m − mcrit

1 + √
Iv

]
, (A 4)

where d/dt indicates a Lagrangian material time derivative. By noting that the second term on
the left-hand side of (A 4) is proportional to D (equation (2.6)) and by using equation (2.12) for
tanψ , equation (A 4) can be rewritten as

dpb

dt
− 3D

2αh
= ρfgz

ρ

D(ρ − ρf)
4

− gz(ρf + 3ρ)
4

[
h
(
∂u
∂x

+ ∂v

∂y

)]
− 3

√
u2 + v2

hα
tanψ . (A 5)

Combining terms involving D and defining χ and ζ by equations (2.3) and (2.5) reduces (A 5)

dpb

dt
+ ρgzχ

[
h
(
∂u
∂x

+ ∂v

∂y

)]
= ζD − 3

√
u2 + v2

hα
tanψ . (A 6)

Taking the full time derivative of pb and using the product differentiation rule for the terms in
brackets results in

∂pb

∂t
+ u

∂pb

∂x
+ v

∂pb

∂y
+ ρgzχ

[
∂hu
∂x

+ ∂hv
∂y

− u
∂h
∂x

− v
∂h
∂y

]
= ζD − 3

√
u2 + v2

hα
tanψ , (A 7)

which is equivalent to equation (2.1e) with (2.4e) used here.
Finally, eqn (4.6) for h in [1] is identical to equations (2.1a) and (2.4a) here, and eqn (4.7) for hm

in [1] is identical to equations (2.1d) and (2.4d) for hm here.

Appendix B. Fluxes and non-conservative products
System (2.1) is an example of the more compact form (2.17)—a general hyperbolic balance law
with distinct flux-gradients and non-conservative products. For system (2.1)

fx(q) =

⎡
⎢⎢⎢⎢⎢⎣

hu
hu2

huv
hum

0

⎤
⎥⎥⎥⎥⎥⎦ , (B 1)

which implies a flux Jacobian,

∂fx(q)
∂q

=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0
−u2 2u 0 0 0
−uv v u 0 0
−um m 0 u 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (B 2)

Inspection of (2.1) gives

Wx(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

κgzh 0 0 0
h(1 − κ)

ρ

0 0 0 0 0
0 0 0 0 0

−χρgzu χρgz 0 0 u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B 3)

Note that Ax(q) in equations (2.20) and (2.23) is the sum of ∂fx(q)/∂q and Wx(q).
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If the term κ is constant, then the second component of fx(q) can become hu2 + 1/2κgzh2

by including κ inside the derivative in (2.1b). In this case, the sum Ax(q) = ∂fx(q)/∂q + Wx(q)
is equivalent, but the term κgzh appearing in Wx(q) instead appears in ∂fx(q)/∂q. Although
mathematically equivalent, including the extra term in the flux facilitates the identification of
proper weak solutions and the application of conservative numerical treatment and shock-
capturing. If instead κ is piecewise constant, it contributes discontinuous coefficients to the non-
conservative product. This additional complexity may require specialized numerical treatment in
order to converge to appropriately defined weak solutions (e.g. [61]).

Owing to symmetry in the momentum equations, the forms of ∂fy(q)/∂q and Wy(q) for (2.1)
can be found by interchanging u and v and permuting the second and third rows and columns in
(B 2) and (B 3).
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